
Semantics-Sensitive Math-Similarity Search

Qun Zhang and Abdou Youssef

Department of Computer Science
The George Washington University

Washington DC, 20052, USA
March 12, 2014

Abstract. The increasingly available electronic math contents demand
a suitable search engine to help users search and retrieve. However, the
unique structural syntax and the variety of semantic equivalences of
mathematic expressions make it a challenge for a keyword-based text
search engine to effectively meet the users’ search needs. Many exist-
ing math search solutions focus on exact search where the notational
matching determines the relevance rank, while the structural similar-
ity and mathematical semantics are often missed out or not addressed
adequately. One important research question is how to effectively and
efficiently find math expressions that are similar to a user’s query, and
how to do relevance ranking of hits by similarity. This paper focuses
on (1) conceptualizing similarity between mathematical expressions, (2)
defining metrics to measure math similarity, (3) utilizing those metrics
for math similarity search, and (4) evaluating performance to validate
advantage of the proposed math similarity search. Our results show that
the performance of Math-similarity search is superior to that of keyword-
based math search.

1 Introduction

More and more math knowledge has become available on the Web, and search is
a gate [SOJ11] to such vast treasure of digital mathematics content. Even though
Information Retrieval (IR) technology has reached maturity, math retrieval is
still in its nascent stages, and many challenges remain. Those challenges are due
in part to the significant difference of math knowledge from other textual doc-
uments. A math equation or expression is often written in a symbolic language
with several levels of abstraction, and often contain rich structural information.
Additionally, notational ambiguities, and syntactical and semantic equivalences,
make math knowledge harder to search. Furthermore, similarity search in math
needs to capture not only the taxonomically similar operation or function names
but also the hierarchically similar structures. For example, x2 + y2 + z2 is ex-
pected by the user to match a2 + b2 + c2 due to the structural similarity of
the two equations. The great inference on the structural aspect and semantic
aspects of math equations calls for a search engine that is capable of detecting
and measuring similarity between mathematical constructs.

Most “first-generation” math search systems are full text-search-based math
search systems that treat math objects as linear strings. However, this approach



2

often misses out the structural information of the math expressions, and makes
it nearly impossible to find a semantically similar math equation. On the other
hand, there are XML-based math search solutions that identify the common sub-
paths between the query equation and the candidate equations. However, XML-
based search methods often limit search to exact matches without systematically
measuring the structural similarity or the semantic similarity between the query
expression and the candidate equation. Similarity search enables users to
find additional knowledge, discover latent relationships to different
fields, and compensate for false recognition [YOK09].

In this paper, we will lay out certain fundamental facts about the Semantics-
Sensitive Math-Similarity Search to find, for a given user query math expression,
the math equations that are structurally and semantically similar to the query.
The specific goals of this paper are:

1. Conceptualize math similarity in a way that makes it possible to measure
and utilize similarity in math search;

2. Develop and study math similarity metrics to measure the similarity between
two math expressions;

3. Develop algorithms for computing math-similarity metrics;
4. Leverage the NIST Digital Library of Mathematical Functions (DLMF) to

build “ground truth” of math queries and corresponding matching equations
with human experts’ knowledge input;

5. Implement a ranking comparison metric to benchmark the results of a math
search against the “ground truth”.

The rest of the paper starts with a brief summary of the related work in Section
2. It then elaborates our research work in Section 3, and draws conclusions in
Section 4.

2 Background

Existing math search engines can be categorized as Text-based and Structure-
based. Text-based math search engines extend full-text search to achieve math
awareness by transforming math expressions into either equivalent linear text
tokens or expanded bags of text tokens. Miller, Youssef, et al. [MIL03, YOU05,
YOU07] developed the first generation of an equation-based math search sys-
tem as part of the Digital Library of Mathematical Functions (DLMF) project
at NIST. They developed an innovative TexSN (i.e. Textualization, Serializa-
tion/Scoping, and Normalization) process to convert math to text, and built
a math search engine on top of existing text search technology. However the
conversion process loses considerable structural, and captures little semantics.
Additionally, its relevance ranking leaves room for improvement. Because it is
one of the few deployed math search engines that are available for us, we leverage
it for performance evaluation.

Some other text-based math search engines include Mathdex [MIN07], Ego-
Math [MIS08], and MIaS [SOJ11], etc. They all took advantage of the mature



3

and optimized text search engines that are already available. But like the DLMF
they are forced to transform math expressions into the legitimate form that the
text search engine can effectively process, leading to the destruction of much
of the native structures of the expressions, and thus preventing truly structural
or similarity search from taking place. Structure-based math search systems,
on the other hand, use a radically different approach based on emerging XML-
based technologies and markup languages. Those math search systems analyze
the structure inherent in the content representations, and statistically identify
the math equations that have the most common sub-structures with the query
expressions.

Kohlhase et al. [KOH06] implemented MathWebSearch which leverages the
semantic information that resides in the structured math equation written in
MathML or OpenMath. With the adoption of the unique substitution tree in-
dexing technique, it provides the full support of alpha-equivalence matching and
sub-equation matching. However, MathWebSearch does not provide relevance
ranking or similarity search.

Other structure-based math search engines include Whelp [ASP06], DFS
& BFS Index of MathML DOM [HAS08], Waterloo Math Retrieval System
[KAM10], etc. They often leverage the metadata to extract semantic annota-
tions. But most of them either simply rank the candidate hits by basic statistical
methods such as count of the occurrences of the matching sub-structures, or not
pay enough attention to the matching function to calculate the similarity score
between the math equations [YOK09].

The paramount challenge of math search is to identify relevant results by
finding equations that are similar to a query equation while allowing for differ-
ence in variable names, order, and structure. However, the lack of a definition for
similarity between math equations, and the inadequacy of exact-match search-
ing, makes the problem of math search even harder [KAM10]. To the best of
our knowledge, there are very few efforts in math similarity search for MathML
encoded equations; Yokoi and Aizawa [YOK09]’s work is by far the only signif-
icant one. They introduced a similarity measure that is based on the “Subpath
Set” of Content MathML syntactic trees. A “Subpath Set” is defined as “the
paths from the root to the leaves and all the sub-paths of those paths”. Trees
whose “Subpath Sets” overlap with each other are considered to be similar. The
significance of their approach is that, rather than the notational similarity of
tokens that the conventional math search engines evaluate, they focused on the
structural similarity of MathML expressions, which we do as well. But they miss
the semantic aspect in the similarity measure. Due to the numerous variations
of Content MathML expressions to express one math equation, without suffi-
cient normalization it is impossible for the search engine to find semantically
equivalent equations which only differ syntactically from the query equation.
Additionally, little performance evaluation was done in the aspect of ranking.

In the latest W3C release of MathML, MathML 3, a subset of Content
MathML is defined: Strict Content MathML. This uses a minimal, but suffi-



4

cient, set of elements to represent the meaning of a mathematical expression in
a uniform and unambiguous structure [W3CMML].

Strict Content MathML requires only 10 XML Elements to be understood by
MathML 3 processors, namely: m:apply, m:bind, m:bvar, m:csymbol, m:ci, m:cn,
m:cs, m:share, m:semantics, m:cerror, and m:cbytes. This provides a great
economy for implementation. On the other hand, MathML 3 assigns semantics to
content markup by defining a mapping from arbitrary Content MathML to Strict
Content MathML, and W3C even laid out a nine-step algorithm [W3CMML]
to transform an arbitrary Content MathML expression into a Strict Content
MathML counterpart. We limit our work to math expressions that can be en-
coded with Strict Content MathML. Given all these special characteristics of
Strict Content MathML, it is chosen for the MathML search implementation in
our research.

3 Semantic-Sensitive Math-Similarity Search

To the best of our knowledge, there is no solution available to address the
similarity measurement of the Strict Content MathML expressions. This mo-
tivated us to start the research effort by addressing similarity and taking the
structure-based approach to implementing semantics-sensitive math-aware sim-
ilarity search with native math language MathML as query input.

3.1 Research Problem

Our research problem is defined as follows:

Given a math equation that is encoded in Strict Content MathML, identify
a list of structurally and semantically similar math equations from a library of
Strict Content MathML encoded math equations, and sort the list items by sim-
ilarity according to some similarity measure.

Specifically, the tasks of our research include:

1. Identify conceptual factors to math similarity

2. Deduce math similarity metrics

3. Implement the math similarity metric

4. Evaluate and refine the math similarity metric

3.2 Math Similarity Factors

Influenced by the Multidimensional Relevance Metric proposed by [YOU07],
we came up with the vector model based multidimensional similarity metric
which takes all the factors into consideration during similarity measurement.
The following five factors are identified and evaluated:



5

1. Taxonomic Distance of Functions Taxonomy defines the hierarchical
groups, i.e. taxa, to be referenced for grouping individual items. Taxonomic
Distance is a measure of taxonomic similarity between two mathematical
terms. In a taxonomy, it is intuitive to assign more similarity to two terms
belonging to the same category than to terms belonging to different cate-
gories. In our search, terms that belong to the same Content Dictionary (CD)
are attributed a higher similarity value than terms that belong to different
CDs.

For future consideration, even within the same Content Dictionary, some
finer-granularity hierarchy could be superimposed to further differentiate
the functions for the more precise similarity measurement.

2. Data Type Hierarchical Level The node of a MathML expression is of a
data type, such as a constant number, a variable, a function (e.g. multipli-
cation, log, etc.), or a function of function (e.g. integral, diff, etc.). Different
data types contribute different levels of significance to the math expression.
To illustrate, here is an example: E1 “matches” Q at the function level, whil

Fig. 1. Illustration of Math Similarity Factor: Data Type Hierarchical Level

E2 “matches” Q at the variable and constant level. Intuitively, similarity at
the function level is more important than at variable or constant level. Thus
E1 is more similar to Q than E2 is. By reference to the Common LISP types
design, we organize these different data types into a partially ordered hier-
archy of types defined by the subset relationship [RED08]. That is, variables
and constants are at the lowest level, function is at the higher level, and
function of function is at the highest level. The premise is that the higher
the data type is in the hierarchy, the higher the significance of that element
is to the whole equation. Note that there are more data type levels in data
type which can be considered in future work, but in this work we limit our-
selves to two levels: function level, and operand level.

3. Match-Depth Naturally each MathML equation is expressed in an XML
tree structure. The nodes at the higher level of the MathML expression tree
decide how the equation starts, and largely determine the nature of the whole
equation. Further down the tree, the nodes depict the characteristics of the



6

equation in more detail and more locality. We claim that the similarity at
the higher level matters more than at the lower level. In other words, the
more deeply nested the query is in an equation, the less similarity there is
between the query and that equation. To illustrate, here is an example: Tree-

Fig. 2. Illustration of Math Similarity Factor: Depth

wise, Q “matches” E1 at a higher level in the tree than it does to E2, and
Q “matches” E2 at a higher level in the tree than it does to E3. Intuitively,
E1 is more similar to Q than E2 is, and E2 is more similar to Q than E3

is. This illustrates that high-level matches correspond to stronger similarity
than lower-level matches.

To incorporate the match-depth element into our similarity metrics, we pro-
pose to represent match-depth as a similarity-decaying multiplicative factor.
It is a decaying factor because the bigger the depth, the smaller the mul-
tiplicative factor should be in order to cause the similarity to be smaller.
One can utilize different models for this decay factor, such as exponential
decay, linear decay, quadratic decay, or constant decay. The different models
produce different degrees of penalty for depth difference. As for which model
to choose for math similarity search, it depends on the type of application
of the math search. For those knowledge discovery oriented math search ap-
plications, the structural similarity of math expressions is more important,
thus the exponential decay model can be a good choice. On the other hand,
for those occurrence search applications, the notational occurrence matters
more than the structural similarity, and thus the linear decay model or the
quadratic decay model can be better fit.

4. Query Coverage In actual use, how much of the query equation Q is “cov-
ered” in the returned equation E is very important. Here is a formal defini-
tion of Query Coverage:

If Q
⋂
E = Q, and E 6= Q, that is Full Coverage of Query, where in this

notation, Q and E are viewed as ordered sets.
If Q

⋂
E = E, and E 6= Q, that is Partial Coverage of Query.

If Q
⋂
E = A, and A 6= Q, A 6= E , that is also Partial Coverage of Query



7

Getting all elements of the query “matched” implies more similarity signif-
icance than getting all elements of a candidate equation “matched” to the
query. Figure 3 gives an intuitive illustration: Q is intuitively more similar
to E1 (Q ⊆ E1) than to E2 (E2 ⊆ Q).
Generally, the higher the query coverage, the higher the significance.

Fig. 3. Illustration of Math Similarity Factor: Query Coverage

5. Formula vs. Expression Typically in math content, formula carries more
weight than math expression because expressions are mere quantities whereas
formula represents not only quantities but also relationships between them.
Therefore, formula matches would be accorded more weights.
Note that, strictly speaking, this is not really a similarity factor, instead it is
a relevance ranking factor. But it is incorporated into our similarity measure,
because our similarity measure is our relevance ranking formula.

This concludes all the factors that are considered for similarity measure.
Next a similarity metric is defined to take those five factors into account for
math similarity measure.

3.3 Math Similarity Metric

We take parse trees as the primary model representing math expressions and
equations, and focus especially on Strict Content MathML parse trees. The no-
tion of similarity between two math expressions/equations will be defined in
terms of their corresponding parse trees T1 and T2, and the similarity measure
between them, denoted sim(T1, T2), will be defined and computed recursively
based on the height of the Strict Content MathML parse tree as explained next.

1. For two trees T1 and T2 of same height 0 In this case, both trees T1
and T2 are singleton leaves, the similarity sim(T1, T2) is defined as:
(a) If T1 and T2 are constants

i. sim(T1, T2) = 1, if T1 = T2.
ii. sim(T1, T2) = δ, if T1 6= T2, where 0 ≤ δ < 1.

δ is one of the parameters that are optimized experimentally.



8

(b) If T1 and T2 are variables
i. sim(T1, T2) = 1, if T1 = T2.
ii. sim(T1, T2) = ε, if T1 6= T2, where 0 ≤ ε ≤ 1.

Because the choice of symbol used for a variable name is immaterial
in most cases, ε is simply set to 1 as the initial value in our imple-
mentation prior to the optimization process. Our research focuses
on the context-free evaluation; otherwise, similarity of two variables
can depend on not only value, but location and role, which can be
an interesting topic for future work.

(c) If T1 and T2 are functions or operators (this paper may reference them
interchangeably), the taxonomic distance is leveraged to measure the
similarity between the two functions.

i. sim(T1, T2) = 1, if T1 and T2 are the same function or operator.
ii. sim(T1, T2) = µ, if T1 and T2 are are functions or operators of

same category in the taxonomy, where 0 < µ < 1. µ is one of the
parameters that are optimized experimentally.

iii. sim(T1, T2) = 0, if T1 and T2 are functions or operators that belong
to different categories in the taxonomy.

(d) If T1 and T2 belong to different data types
i. sim(T1, T2) = θ, if one tree is a constant and the other is a variable,

where 0 ≤ θ < 1.
ii. sim(T1, T2) = 0, if one tree is a function and the other is a constant

or variable.
2. For two trees T1 and T2 of same height h ≥ 1 In this case, the trees T1

and T2 are composed of function apply operator @ as root, a left-most child
node representing function/operator, followed by a set of argument/operand
nodes which are sub-trees, as illustrated in Fig. 4. Naturally the similar-

Fig. 4. Illustration of two trees T1 and T2 of same height h ≥ 1

ity between T1 and T2 is affected by the similarity between the two operator
node f1 and f2, and by the similarity between the two sets of operand nodes.
p is the number of operand nodes in T1, while q is the number of operand
nodes in T2. We treat T1 as the query equation, T2 as an equation/expression
in the database. Because operators are more important than operands, the
similarity between T1 and T2 is defined as a weighted sum:
sim(T1, T2) = α· sim(f1, f2) + β· sim({SubT11, SubT12, . . . , SubT1p},
{SubT21, SubT22, . . . , SubT2q}),



9

where α and β are weighting factors that capture the significance of the
similarity contribution from each child node of the tree. Weighting factor
α = ω

p+ω , and β = 1
p+ω , where ω is boost value for the leftmost child being

a function/operator data type as opposed to argument/operand. We take
ω > 1. Using p instead of q takes the query coverage factor into account.

The similarity between the two sets of operand nodes,
sim({SubT11, SubT12, . . . , SubT1p}, {SubT21, SubT22, . . . , SubT2q}),
is a compound value,
0 ≤ sim({SubT11, SubT12, . . . , SubT1p}, {SubT21, SubT22, . . . , SubT2q}) ≤ p.
The measure of the similarity between the two sets of operand nodes depends
on the commutative nature of the operators.

(a) If f1 and f2 are non-commutative operators/functions, the order of the
operands is observed - the similarity between the two sets is the sum
of the similarities between the corresponding available pairs of operand
nodes with one from each tree:
sim({SubT11, SubT12, . . . , SubT1p}, {SubT21, SubT22, . . . , SubT2q}) =∑min(p,q)

i=1 sim(SubT1i, SubT2i)

(b) If f1 and f2 are commutative operators/functions, an operand node in
T1 can be paired with any operand node in T2. To find the best pairing
between the 2 sets of operand nodes, the permutations of the operand
nodes are taken into consideration. It should be noted that the com-
putation of the above similarity is very costly, (at least p! due to the
permutations), which can be prohibitive in some instances. In this re-
search, we apply the Greedy Approximation algorithm as described in
Fig. 5 to find a solution that is close to the optimum similarity value.
In this case, the similarity between the two sets of operands is defined
as:
sim({SubT11, SubT12, . . . , SubT1p}, {SubT21, SubT22, . . . , SubT2q})
= max

{
(
∑p

i=1(sim(SubT1i, SubT2t(q,p,i))))
}

, where t(q, p, i) is the i-th
element of a p-permutation of q.

≈
∑min(p,q)

i=1 max (
{
sim(SubT1i, SubT2ϕ(i))

}
, by applying greedy ap-

proximation, ϕ(i) = 1, 2, . . . , q and ϕ(i) /∈ {ϕ(1), ϕ(2), . . . , ϕ(i− 1)}.
It is noted that other approximation algorithms can be used to replace
the proposed Greedy algorithm for more optimum approximation and/or
less computational complexity. This is not to be addressed in this re-
search, but deferred for future research.

(c) If f1 is commutative operator/function, and f2 is non-commutative op-
erator/function, or vice versa, we argue that this case should be the
same as the above case with both f1 and f2 are commutative opera-
tors/functions. Because for example, if we have query tree Q : 5 − 2,
expression E1 : 5+2, and expression E2 : 2+5, then we should have sim
(Q,E1) = sim (Q,E2) which we will not have if we do not “permute”
the sub-trees of the tree with commutative operator. Thus, in this case,
the similarity between the two sets of operands is defined the same as



10

Fig. 5. Greedy Algorithm to find Similarity of Two Trees with Commutative Operators

the case with both operators being commutative. The example in Fig.6
is given for illustration.

Fig. 6. Example of two trees: T1 with commutative operator, and T2 with non-
commutative operator

3. For two trees T1 and T2 of different heights If one of the two trees, say
T1, is of height(T1) = h, and the other tree T2 is of height(T2) ≥ h+ 1, then
the match between T1 and T2 can be at the highest level of T2, or nested in
the T2, and the best match of these two possibilities is taken. In other words,
to measure the similarity between T1 and T2, not only the similarity between
T1 and T2 at their root level is evaluated, but also the similarity between
entire tree T1 and each single sub-tree of T2, that is sim(T1, SubT2j), in this
case because the match is nested, the match-Depth Penalty is applied. Then
we choose whichever the larger value as the final similarity measure. Thus,
in this case, the similarity between the two trees T1 and T2 is defined as



11

shown in Fig 7.

Fig. 7. Similarity Metric for two trees T1 and T2 of different heights

We recursively keep comparing the first tree T1 with the sub-trees of the
second tree T2 , till the two trees under evaluation are of the same height,
in which case the similarity metric is already defined.

3.4 Performance Evaluation

To our best knowledge, there is no standard benchmark MathML documents
set together with a set of standard sample queries that can be used to evaluate
MathML Search engine’s performance. This makes it a challenge to quantita-
tively compare the performance of versions Math Similarity Metrics as well as
various Math Search engines.

1. Evaluation Methodology As the DLMF math digital library and search
engine are among the few available and easily accessible, this research lever-
ages the DLMF as the source for mathematical equations repository, and we
compare our similarity search approach to the DLMF search system. The
methodology of how we build the dataset and evaluate the performance of
the proposed similarity metrics is depicted below.
On the one hand, the queries with varying degrees of mathematical com-
plexity and length were selected. For each query in the test set, we identify
the expected relevant equations from DLMF source repository, and further
rank them manually by a group of human experts, which are then named as
“ground truth”.
On the other hand, each query equation is compared with the equations in
the DLMF repository, and a similarity value is computed with the proposed
similarity metric. Afterwards, this list of equations is ordered by the simi-
larity measurement.
Up to this point, for any given query, there are three hit lists: one from
“ground truth”, one from DLMF site returned by DLMF search, and another



12

ranked by the proposed similarity metric. In order to quantitatively evaluate
the performance, this research proposes to compare the three lists of results
to figure out the correlation between the proposed Semantics-Sensitive Math-
Similarity Search (SSMSS) result list and the “ground truth” list, and the
correlation between the DLMF search result list and the “ground truth” list.
Our comparison is done with respect to recall and relevance ranking.
To evaluate the quality of the relevance ranking, the two classical rank cor-
relation coefficient metrics, namely, Kendall’s tau and Spearman’s pho, are
used. In statistics, the Kendall’s tau (τ) coefficient is used to measure the
extent of agreement between two lists of measurements, while Spearman’s
rho (ρ) is the standard correlation coefficient of statistical dependence be-
tween two variables. In general, the magnitude of Kendall’s tau is less than
the value of Spearman’s rho. Both metrics are implemented in this research
to complement each other in the ranking comparison.

2. Performance Evaluation Results The performance evaluation of the pro-
posed search (SSMSS) shows that both the recall and the ranking based on
our proposed similarity metric align better with the “ground truth” than
that of DLMF search.
Figure 8 and Fig. 9 indicate that the search results of most of the 40 queries
in our evaluation that are returned by the proposed SSMSS search have
better correlation to “Ground Truth” than those of DLMF, with respect to
Kendall’s tau metric and Spearman’s rho metric. That validates the advan-
tage of the proposed SSMSS over the DLMF Search with respect to relevance
ranking.
Figure 10 and Fig. 11 indicate that with respect to the recall of the top
20 results, the SSMSS does not differ significantly from the DLMF search.
However, with respect to the recall of the top 10 results, the SSMSS search
shows better performance than the DLMF search does.

4 Conclusion

In order to effectively and efficiently find math expressions that are similar to
a user’s query, this paper conceptualizes math similarity between mathemati-
cal expressions with more weight to structural similarity and mathematical se-
mantics than the mere notational matching that many existing math search
solutions focus on. Further, this paper proposes the Semantic-Sensitive Math-
Similarity metric to measure the math similarity. With the availability of Strict
Content MathML which represents math in disambiguated uniform structure, an
algorithm is developed to compute the math similarity between any two Strict
Content MathML encoded math expressions. Additionally, a “ground truth” of
math queries and corresponding matching equations is constructed by leverag-
ing the NIST Digital Library of Mathematical Functions (DLMF), and is used
as a benchmark for performance evaluation. Comparing with the existing non-
similarity based math search techniques, primarily the DLMF math search, the
proposed Semantic-Sensitive Math-Similarity search does show the performance



13

Fig. 8. Kendall’s tau Correlation Analysis of MSS Results vs. DLMF Results over 40
Queries

Fig. 9. Spearman’s rho Correlation Analysis of MSS Results vs. DLMF Results over
40 Queries



14

Fig. 10. Recall Analysis of MSS Top 20 Results vs. DLMF’s Top 20 Results over 40
Queries

Fig. 11. Recall Analysis of MSS Top 10 Results vs. DLMF’s Top 10 Results over 40
Queries



15

advantage with respect to both recall and relevance ranking.
However, many parameters of the proposed similarity metric are yet to be op-
timized, including taxonomic distance value (e.g. µ, θ) between functions, op-
erator/function nodes type booster value ω, depth penalty decay model and
parameter value, query coverage factor etc. We plan to address them in the near
future.

References

[DLMF] The Digital Library of Mathematical Functions (DLMF), the National Insti-
tute of Standards and Technology. http://dlmf.nist.gov/.

[HAS08] Hideki Hashimoto, Yoshinori Hijikata, and Shogo Nishida. Incorporating
Breadth First Search for Indexing MathML Objects. SMC’08. IEEE Inter-
national Conference on Systems, Man and Cybernetics, 2008.

[KAM10] Shahab Kamali and Frank Wm Tompa. A New Mathematics Retrieval Sys-
tem. Proceedings of the 19th ACM international conference on Information
and knowledge management. CIKM ’10. ACM New York, NY, USA, 2010.

[KOH06] Michael Kohlhase and Ioan ucan. A Search Engine for Mathematical For-
mulas. Proceedings of Artificial Intelligence and Symbolic Computation, AISC
’06, Springer Verlag, pages 241253, 2006.

[MIL03] Bruce Miller and Abdou Youssef. Technical Aspects of the Digital Library
of Mathematical Functions. Annals of Mathematics and Artificial Intelligence.
38(1-3), pages 121136, Springer Netherlands, 2003.

[MIN07] Robert Miner and Rajesh Munavalli. An Approach to Mathematical Search
Through Query Formulation and Data Normalization. Calculemus/MKM 2007,
pages 342-355, Hagenberg, Austria, June 27-30, 2007.

[MIS08] Jozef Miutka and Leo Galambo. Mathematical Extension of Full Text Search
Engine Indexer. Proceedings of Information and Communication Technolo-
gies: From Theory to Applications, 2008. ICTTA’08, IEEE Catalog number
CFP08577, Syria, 207-208, 2008.

[RED08] Abhishek Reddy. Features of Common Lisp. http://random-
state.net/features-of-common-lisp.html. 2008.

[SOJ11] Petr Sojika and Martin Lka. The Art of Mathematics Retrieval. Proceedings of
the ACM Conference on Document Engineering, DocEng’11, Mountain View,
CA, 5760, 2011.

[W3CMML] Mathematical Markup Language (MathML) Version 3.0 (Third Edition),
World Wide Web Consortium. Http://www.w3.org/TR/MathML3/.

[YOK09] Keisuke Yokoi and Akiko Aizawa. An Approach to Similarity Search for
Mathematical Expressions using MathML. Towards a Digital Mathematics Li-
brary. Grand Bend, Ontanrio, Canada, July 89th, 2009. Masaryk University
Press, Brno, 2009. Pages 2735.

[YOU05] Abdou Youssef. Information Search and Retrieval of Mathematical Contents:
Issues and Methods. The ISCA 14th Int’l Conf. on Intelligent and Adaptive
Systems and Software Engineering (IASSE-2005), July 2022, Toronto, Canada,
2005.

[YOU07b] Abdou Youssef. Methods of Relevance Ranking and Hit-Content Generation
in Math Search. Calculemus/MKM, 2007.


